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Abstract. Pressure relief valve is one of the most important devices used on the security of pipelines, since it is 
responsible to guarantee the integrity of the installations. Generally, the response and behavior of a relief valve during 
its transient is unknown by users, who employ simplified and static analysis to design the pipeline, further, the 
information provided by manufactures is limited. In this work, a numerical dynamic model of a spring load pressure 
relief valve was developed using the principles of conservation of mass and momentum in combination with solid 
dynamics equation. The valve discharge coefficient was numerically determined by employing a simplified two-
dimensional model with FLUENT. The dynamic characteristics of the valve were examined with regard to the pressure 
set point, disc lift and spring parameters, during the transient discharge flow. 
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1. INTRODUCTION 

Relief and safety valves are fundamental equipments for oil and gas pipelines and load/unload terminals. The 
installation integrity and workers safety depend on the appropriate design and performance of these equipments. In spite 
of the importance of relief valves, there is lack of information about the dynamic behavior of these equipments. Thus, 
users are forced to work using valve characteristics supplied only by manufactures. Further, the information supplied by 
manufactures is generally restricted to situations of maximum pressure relief flow. The full dynamic behavior of the 
relief valves during their opening stage, which is fundamental for analysis of transients during their actuation, is usually 
not available. 

In spite of the importance of relief valves, only a few works about its dynamic behavior has been published. 
Catalani (1984) performed a dynamic stability analysis of a relief valve and identified the effects of its components on 
its stability. The undesired phenomenon named chatter (abrupt oscillations of the disc) was studied by MacLeod (1985) 
who modeled, using differential equations, the dynamic of a relief valve and identified the conditions to avoid it. In 
1991 Shing made a study about the dynamic and static characteristics of a two stage pilot relief valve and determined 
the governing parameters of the valve response which could be improved. The dynamic of a direct operated relief valve 
with directional damping was studied by Dasgupta et al (2001) using the bondgraph technique. Maiti et al (2002) 
studied the dynamic characteristics of a two-stage pressure relief valve with proportional solenoid control of its pilot 
stage. According to their results, the overall dynamic behavior is dominated by the solenoid characteristic relating force 
to applied voltage. Boccardi et al (2004) analyzed experimentally the water/vapor two phase flow through a relief valve. 
A new correlation for the discharge coefficient was developed, by comparing the experimental data with the solution of 
the flow based on a homogeneous model.  

The objective of this work is to simulate the dynamic behavior of a direct acting spring loaded pressure relief valve 
(PRV) during its actuation. The identification of its governing parameters will allow the extension of the analysis to 
more general and real cases. 

2. MATHEMATICAL MODEL 

Although the dynamic behavior of a PRV is strongly influenced by its geometric configuration and dimensions, a 
simplified geometry, as shown in Fig. 1, was considered to the development of a mathematical model. The simplified 
system is composed of a spring, a cap or disc and a input flow pipe (valve wall). For the flow analysis through the PRV, 
the fluid was considered as incompressible and isothermal. Due to the cylindrical shape of the geometry, the flow was 
considered axi-symmetric. 

2.1. Dynamic characteristic 

The PRV starts opening when the operation pressure Pa exceeds the set point pressure Psp. During the disc 
displacement, the Newton's second law can be applied to the system illustrated in Fig. 2, resulting in the spring-disc 
dynamic system equation, Eq. (1). 



 

Figure 1 – PRV simplified system 
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where Ff is the force applied by fluid to disc, k is the spring constant, YD is the disc displacement, Yo is the spring initial 
deformation, c is the spring viscous damping coefficient, mD is the disc mass, g is the gravity acceleration, Po is the 
external pressure (atmospheric pressure) and A is the cross section of the little pipe / disc area. 

Applying the principle of conservation of linear momentum in the y direction, to control volume inside the PRV 
illustrated in Fig. 3, neglecting the time y momentum variation inside the control volume, since it can be considered 
small in relation to the others quantities, results in  
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where ρ is the fluid density, L is the length of the valve wall, Ff  is the reaction applied by the disc to fluid, ue is the 
average velocity coming into the control volume and Pa is the operation pressure or the PRV input pressure. 

Combining the spring-disc dynamic equation, Eq. (1), with the fluid momentum conservation equation, Eq. (2), the 
following expression is obtained 
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where Q = ρ ue A is the average flow rate coming into the control volume.  
The initial spring deformation Yo can be determined as a function of the set point pressure Psp to open the relief 

valve, by applying Eq. (3) to the instant immediately before the valve opening, i.e., YD = 0 and Q=0, Pa=Psp. 
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Figure 2 – The disc free body diagram during its 

displacement 
Figure 3 – Control volume inside of the PRV during its 

actuation 
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Equating (3) can be simplified with Eq. (4) as 
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Applying the principle of mass conservation into the PRV control volume during its actuation, Fig. 3, the average 
flow rate that exits from the control volume Qs can be related with the inflow rate Q and the disc displacement YD as 
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Further, the valve outflow rate Qs can be defined by the valve equation as 
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where Cd is the valve coefficient and A is a reference area, in this work it was considered as the disc area. 
Finally, the equation that governs the dynamic behavior of the PRV during its actuation can be obtained by 

combining Eqs. (7), (6) and  (5) as 
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2.2 Initial and Boundary Conditions 

Initially it is considered that the PRV is closed (YD=0 and d YD /d t = 0). The flow through the valve begins when the 
operation pressure Pa exceed the set point pressure Psp. When the disc reaches its maximum position YDmax, there is no 
more displacement, and the disc wall reaction RD for this situation can be obtained from Eq. (2) as 
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and the inflow and outflow volumetric flow rate through the valve is the same, Q=Qs. The flow rate can be calculated 
using the Eq. (7). A similar situation occurs when the disc displacement reaches its minimum position, YDmin=0, and the 
PRV is closed. 

2.3. Dimensionless Parameters 

The mathematical model, described by Eq. (8), can be normalized considering it as an oscillation-damping system, 
with YD

* = YD/D, t* = t ν/D2 and P* = P/(ρν2/A) where ν is the cinematic viscosity as 
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The resulting dimensionless parameters that govern the valve behavior are listed in Table 1. 

3. NUMERICAL METHOD 

Equation (10) was solved numerically using a fourth-order Runge-Kutta method. The numerical algorithm was 
implemented using Fortran. 



Table 1 - Dimensionless Parameters 
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Among the several parameters listed on Table 1, the valve coefficient Cd is the critical parameter to be specified. It 
depends on the flow distribution inside the valve. Usually, it is determined experimentally, based on steady state flow 
with different valve openings. At the present work, the discharge coefficient was determined numerically, considering a 
steady state regime for different valve openings, as it is done experimentally.  

3.1. Discharge Coefficient 

The valve coefficient, Cd, was determined from the flow field inside the simplified valve, illustrated in Fig. 1, 
employing the software FLUENT, with the following dimensions: L = 0.2 m, D = 0.1m and YDmax = 0.1 m. The valve 
was considered axi-symmetric, therefore, several 2D turbulent steady state flow were obtained, for different valve 
openings, through the solution of the Reynolds-averaged mass and momentum equations (RANS) given by 

0=
∂

∂

j

j
x
u

 (11) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

−=
∂

∂

j
i

j
i

t
ji

ji
j x

u
x
u

xx
puu

x
)( μμρ

 (12) 

where ju  is the time average velocity, μ and μt are the absolute and turbulent viscosity, and P is the pressure. The 

turbulent viscosity was determined with the κ−ω SST model (Menter, 1994), which was developed to blends the 
effectively robust and accurate formulation of the standard κ−ω model in the near-wall region with the free-stream 
independence of the κ−ε model in the far field. The blending is designed to be one in the near-wall region, which 
activates the standard κ−ω model, and zero away from the surface, which activates the transformed κ−ε model. The 
turbulent eddy viscosity μt is defined as 
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ρμ k
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where ω is the specific dissipation, and ξ is the blending term. There is also a cross-diffusion term Dω   included in the ω 
equation. The model requires the solution of two conservation equations, one is the standard κ equation, and the other is 
specific dissipation ω equation. These equations are given as 
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where Gκ represents the production of turbulent kinetic energy due to mean gradients, while Gω is the production of ω. 
Γκ = μ+μt/σκ and Γω = μ+μt/σω are the effective diffusivity of κ and ω, where σκ and σω are the turbulent Prandtl 
numbers for of κ and ω, respectively. Yκ and Yω are the destruction of κ and ω, due to turbulence. The model is 
presented in detail in FLUENT, v6.3 (2008). 

The operating pressure Pa = 2 atm was set at the inlet and the discharge pressure Po was set as 1 atm. Water was 
selected was the working fluid (ρ = 1000 kg/m3 and µ= 10-3 Pa-s). Figure 4 illustrates the streamline distribution for a 
particular opening, where the bending of the flow toward the valve exit can be clearly seen.  

From the converged flow field, the valve coefficient Cd was calculated using Eq. (7). Figure 5 presents the valve 
coefficient Cd as a function of the different opening, normalized by the maximum aperture YDmax (Y'D=YD/YDmax). At the 
same figure, a third order polynomial adjusted to fit the data was plotted. This polynomial was included in Eq.  (10) 
to determine the dynamic of the valve aperture. 

 

 
Figure 4 – Streamlines into the PRV geometry used 

for Cd calculation, YD = 0.040 m Figure 5 – Valve coefficient calculated numerically 

4. RESULTS 

To validate the developed computational code, several test cases were performed. The pressure set point and 
operational pressure were defined as Psp = 2 kgf/cm2 and Pa = 3 kgf/cm2. The spring dimensional parameters were 
specified as: k = 4kgf/mm, c = 31 kgf-s/m, mD = 200 g. For this situation the initial spring displacement Yo is 18.5 mm.  

Figure 6 shows the PRV disc displacement along the time. On the beginning of the PRV opening the disc has 
reached its maximum displacement, followed by a strong oscillation, which was damped as time increased, reaching an 
equilibrium displacement of 90.4 mm, after 0.25s. The Figure 7 shows the time variation of the inlet and outlet flow rate 
through the PRV. Initially, there is a great difference among the two quantities, due to the increase of the valve volume. 
As the disc stabilizes, there is no more volume change, equating the inlet and outlet flow rate to 532.3 m3/h after 0.25 s. 
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Figure 6 – PRV disc displacement through the time Figure 7 – PRV input and output flow rate through 

the time 
 



In other to analyze the sensibility of the disc displacement to its several parameters, additional tests were performed. 
The influence of viscous damping coefficient c on the disc displacement is illustrated at Fig. 8. As expected, it can be 
seen that for large c the initial perturbations are smaller and the disc equilibrium occurs more rapidly. In the equilibrium 
stage, the three cases reached the same disc displacement equal to 90.4 mm.  
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Figure 8 – Influence of the viscous damping coefficient in the PRV disc displacement 
 
The influence of the spring coefficient k is shown in Fig. 9. It can be observed that higher k values lead to higher 

values of disc reaction force against fluid, causing larger amplitude oscillations in the first instants of the PRV actuation. 
However, as a result of the greater resistance to disc displacement, it reaches equilibrium more rapidly, in a position 
with smaller displacement. Smaller k values imply less resistance to disc displacement, leading to the total opening of 
the PRV in the first instants of its actuation.  
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Figure 9 – Influence of the spring constant in the PRV disc displacement 
 
Figure 10 shows the influence of the disc mass in the valve aperture. Note that, by increasing the disc mass, the 

maximum displacement and the equilibrium are reached more slowly. The equilibrium disc displacement was equal to 
90.4 mm in the three cases. Increasing the disc mass reduces the natural spring frequency ωo, leading to longer waves 
with smaller frequency, increasing the time required to reach equilibrium. 

The influence in the disc displacement due to the operation pressure at the inlet of the PRV is shown in Fig. 11. It 
can be seen that smaller operation pressure values, lead to smaller disc oscillations. The disc equilibrium is more rapidly 
reached, since the disc equilibrium displacement is proportional to its external force caused by the operation pressure. 

Figures 12 and 13 illustrate the influence of the maximum displacement of the PRV disc in its operation. For these 
tests, the polynomial curve for Cd × Y'D was adjusted to the new maximum displacement. Three different maximum 
displacements were considered: 25 mm, 50 mm and 100 mm.  



Proceedings of ENCIT 2008                                                                      12th  Brazilian  Congress of Thermal Engineering and Sciences 
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG 

 

0.00 0.02 0.04 0.06 0.08 0.10
0.00

20.00

40.00

60.00

80.00

100.00

   (g)

50

200

1000

 
Figure 10 – Influence of the disc mass in the PRV disc displacement 
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Figure 11 – Influence of  the operation pressure in the PRV disc displacement 
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Figure 12 – Influence of the disc maximum 
displacement in the PRV disc equilibrium 

Figure 13 – Influence of the disc maximum 
displacement in the PRV flow equilibrium 



Figure 12 shows the influence of the maximum displacement in the valve dynamic aperture, while Fig. 13 shows the 
flow rate through the valve. Since the driving force is high, the disc rapidly reaches its maximum position, and no 
oscillation is observed, and as expected, smaller flow rate is obtained. However, it can be seen in Fig. 13 that although 
the maximum disc displacement was reduced in 50%, there was a reduction of only 27% of the flow rate. 

5. FINAL REMARKS 

The present work has derived a mathematical model for a direct acting spring loaded pressure relief valve. The 
developed mathematical model predicts the disc behavior and the input – output flow rate of the relief valve during its 
transient (dynamic characteristics) and equilibrium state. Although a simplified geometry was considered, the 
methodology can be applied to more complex geometries.  

A sensibility analysis was performed, by analyzing the influence of the several governing parameters in the valve 
disc displacement, and reasonable results were obtained.  

As a next step to the present analysis, two fronts are being pursued. In the first one, an experimental apparatus is 
being built to allow comparison with the model predictions. The second front consists of improving the numerical 
determination of the valve coefficient Cd, by employing a 2D transient analysis of the flow inside the valve. 
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